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Abstract 

In this study, it is assumed that in a financial market the risky asset was governed by the 

constant elasticity of variance (CEV) model and the surplus process of an insurer 

approximated by a stochastic differential equation (SDE) where the insurer traded two assets- 

a risky asset (stock) and a risk free asset (bond). The insurer was permitted to take proportional 

reinsurance and the effect of the correlation of the Brownian motions investigated when they 

did not correlate and when they did. Hamilton-Jacobi-Bellman equations (HJB) were derived 

using the Ito’s lemma from which the insurer’s optimal investment strategy and the reinsured 

proportion were obtained. It was observed that the investment strategies differed by the 

fraction,  
𝜌𝑏(𝑝(𝑡)−1)

𝛽
 and optimal reinsured proportion by the fraction, 

𝜌 𝛽𝑠2𝛾(𝑡)

𝑏
. Both were found 

to be horizon dependent, therefore it is recommended that this condition of horizon dependency 

should be taken into consideration when making investment decision. 

 

Keywords: Constant elasticity of variance (CEV) model, Exponential utility preference, 

Hamilton-Jacobi-Bellman equations (HJB), insurer, shocks correlation. 

  

1. Introduction 

Insurance is one of the social sciences essentially designed for risk taking. This process of risk 

taking entails the pooling together of resources of many individuals. 

Daily, people are exposed to infinite number of risks that may affect their persons or their 

properties. The insured transfers those risks to an insurer, at a fixed cost called the insurance 

premium.  According to Gu (2014), investment and reinsurance are two main ways for insurers 

to balance their profits and risks. Reinsurance is a transaction whereby one insurance company 

agrees to indemnify another insurance company against all or part of the loss that the latter 

sustains under a policy or policies that it has issued. The company that grants insurance to an 

insurer is called a reinsurer.  

 

The purpose of reinsurance is to spread risk. This protects insurers against extraordinary and/or 

unforeseen losses by allowing them to spread their risks. A case of a catastrophic fire in an 

industrial enterprise which could devastate its insurer financially is an example that requires 

reinsurance.  

A contractual relationship between an insurer and an insured which provides the insured the 

financial means to compensate a pecuniary claim or reduce the consequence of personal injury 

sustained in a claim is an example of insurance contract or policy.  
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A primary insurer, which is the insurance company, an individual or business, purchases a 

policy from and transfers her risks to a reinsurer through a process called premium payment to 

reinsurance companies. The premiums primary insurers pay to reinsurers may be reduced by 

any commission the insurer pays to their reinsurer.  

Recently, insurance companies play more active role in the financial markets. They invest in 

the financial market, purchase reinsurance from the reinsurer and acquire new businesses; 

acting as reinsurers to other insurers, to avoid risk. 

 

Many authors have contributed to insurance literatures. Wang et al. (2007) applied martingale 

method to study the optimal portfolio selection for insurer under the mean-variance criterion 

as well as the expected constant absolute risk aversion (CARA) utility maximization. In 

addition to the risk of market, the insurer also takes into account the risk of insurance. The risk 

of insurance cannot be avoided by single investing in the bond and other assets in market. 

 

Bauerle (2005) investigated quota-share reinsurance and investment which were previously 

looked into by proportional reinsurance that was accessible in which he minimized the expected 

quadratic distance of the terminal value over a positive constant and solved the related mean-

variance problem successfully. 

 

Zhibin and Bayraktar (2014) studied the problem of optimal Reinsurance–investment in a 

constant elasticity of variance stock market for Jump-diffusion risk model and obtained explicit 

expressions for the optimal strategies and value function. They used numerical examples to 

show the impact of model parameters on the optimal strategies.  

Yang and Jiaqin (2016) considered optimal investment-consumption-insurance with random 

parameter. They discussed that optimal investment, consumption, and life insurance purchase 

problem for a wage earner in a complete market with Brownian information. They assumed 

that the parameter governing the market model and the wage earner, including the interest rate, 

appreciation rate, volatility, force of mortality, premium-insurance ratio, income and discount 

rate, are all stochastic. 

 

Deng et al (2015) in their study of the optimal proportional reinsurance and investment for a 

constant elasticity of variance model under variance principle assumed that the insurer’s 

surplus process follow a jump-diffusion process. 

Osu et al. (2014) studied the survival of insurance company when consumption was involved 

under power and exponential utility functions and found that the optimal strategies obtained 

for both utility functions yielded results that are alike.  

 

Ihedioha and Osu (2015) studied the optimal portfolio of an insurer and a reinsurer under 

proportional reinsurance and power utility preference in which the insurer’s and the reinsurer’s 

surplus processes were approximated by Brownian motion with drift.  

 

Li et al.  (2015) studied a time – consistent reinsurance – investment strategy for a mean – 

variance insurer under stochastic interest rate model and inflation risk and derived the time – 

consistent reinsurance – investment striates as well as the corresponding value function for the 

mean – variance problem explicitly. They also study the optimal investment problem for an 

insurer and a reinsurer under the proportional reinsurance model. The insurer’s and reinsurer’s 

surplus processes are both approximated by a Brownian motion with drift and the insurer can 

purchase proportional reinsurance from the reinsurer. Both the insurer and the reinsurer are 

allowed to invest in a risk-free asset and a risky asset. They first study the optimization problem 

of minimizing the ruin probability for the insurer. Then according to the optimal reinsurance 
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proportion chosen by the insurer, they study two optimal investment problems for the reinsurer: 

the problem of maximizing the exponential utility and the problem of minimizing the ruin 

probability. By solving the corresponding Hamilton-Jacobi-Bellman (HJB) equations, they 

derived optimal strategies for both the insurer and the reinsurer explicitly. Furthermore, they 

find that the reinsurer’s optimal strategies under the two cases are equivalent for some special 

parameters. Finally they present numerical simulations to illustrate the effects of the model 

parameters on the strategies.  

 

Zhou and Cai (2014) studied the optimal dynamic risk control for insurers with state – 

dependent income in which they investigated optimal forms of dynamic reinsurance policies 

among a class of general reinsurance strategies. The original surplus process of an insurance 

portfolio is assumed to follow a Markov jump process with state-dependent income. They 

assumed that the insurer uses a dynamic reinsurance policy to minimize the probability of 

absolute ruin, where the traditional ruin can be viewed as a special case of absolute ruin. In 

terms of approximation theory of stochastic process, the controlled diffusion model with a 

general reinsurance policy is established strictly. In such a risk model, absolute ruin is said to 

occur when the drift coefficient of the surplus process turns negative, when the insurer has no 

profitability any more. Under the expected value premium principle, they rigorously prove that 

a dynamic excess-of-loss reinsurance is the optimal form of the reinsurance among a class of 

general reinsurance strategies in a dynamic control framework. 

 

Zhibin and Guo (2010) considered the optimal proportional Reinsurance under two criteria 

maximizing the expected utility and minimizing the value at risk and proved the existence and 

uniqueness of the optimal strategies and Pareto optimal solution, and give the relationship 

between the optimal strategies.  

 

Gu et al. (2010) studied the constant elasticity of variance model for proportional reinsurance 

and investment strategies in which the claim process is assumed to follow a Brownian motion 

with drift, while the price process of the risky asset is described by the   constant elasticity of 

variance model and obtain the optimal reinsurance and investment strategies.  

The above reviewed works did not consider the case of correlation of Brownian motions. 

Therefore, in this study, we shall consider the case of a reinsurer assessing  the impact of the 

correlation of the Brownian motions on the insurer’s optimal investment strategy and reinsured 

proportion where the insurer’s surplus process is approximated by constant elasticity of 

variance (CEV) model, and an insurer could purchase proportional reinsurance from the 

reinsurer. 

 

Ito’s lemma shall be used in obtaining the Hamilton–Jacob-Bellman (HJB) equation which will 

be solved to get the insurer’s optimal investment in the risky and the optimal reinsured 

proportion after which we investigate the effects of the correlation of the Brownian motions on 

them. 

 

2. The Model Formulation the Model 
The constant elasticity of variance (CEV) model is one-dimensional diffusion process that 

solves a stochastic differential equation (SDE). It is a natural extension of the geometric 

Brownian motion (GBM). The constant elasticity of variance model was originally proposed 

by Cox and Ross as an alternative diffusion process for European option pricing. Compared to 

Geometric Brownian Motion (GBM), we see that the advantages of the constant elasticity of 

variance (CEV) model are that the volatility rate has correlation with risky asset price and can 

explain the empirical bias such as volatility smile.  
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The constant elasticity of variance (CEV) model is giving as; 

𝑑𝑆(𝑡) = 𝑆(𝑡)[µ𝑑𝑡 +  𝛽𝑆(𝑡)𝛾𝑑𝑍(𝑡)] ,                                  

where 𝜇 is a long term rate of return, 𝛾 is the elasticity parameter satisfying𝛾 > 0, 𝛽𝑆𝛾(𝑡) is 

the volatility, and 𝑍(2)(𝑡) is a standard Brownian motion . 

 

Remark: when the elasticity parameter 𝛾 equals zero, the constant elasticity of variance (CEV) 

model reduces to Geometric Brownian motion. 

 

2.1.    The Model 

Suppose the claim process 𝐶(𝑡) of an insurance company is described by; 

 𝑑𝐶(𝑡)  = 𝑎𝑑𝑡 − 𝑏𝑑𝑍(1)                                 (1) 

Where a and b are positive constant and𝑍(1)(𝑡) is a standard Brownian motion defined on a 

complete probability space (Ω, 𝑓, (𝑓𝑡);  𝑡 >  0). 
Assuming also that the premium rate is 

𝑐 = (1 +  𝜃)𝑎.                                                                                          (2) 

where 𝜃 > 0is the security risk premium. 

Applying (2) in (1), the surplus process of the insurer is now given as 

𝑑𝑅(𝑡) =  𝑐𝑑𝑡 − 𝑑𝐶(𝑡) = 𝑎𝜃𝑑𝑡 + 𝑏𝑑𝑍(1)(𝑡)                       (3) 

We assume that the insurance company has the permission to purchase proportional 

reinsurance to reduce her risk and pays reinsurance premium continuously at the rate of 

(1 +  𝜂)𝑎𝑝(𝑡)where 𝜂 > 𝜃 > 0 𝑖s the safety loading of the reinsurer. 

The surplus of the insurance company is then given as 

𝑑𝑅(𝑡) = (𝜃 − 𝜂𝑝(𝑡))𝑎𝑑𝑡 + 𝑏(1 − 𝑝(𝑡))𝑑𝑍(1)(𝑡),                               (4) 

 

We also assume that the insurer invests his surplus in a market consisting of two assets; a risky 

asset (stock) and a riskless asset (bond).Denoting the prices of the risky and riskless assets 

by𝑆(𝑡) and𝐵(𝑡) respectively and the dynamics of the price of the risky asset is modeled using 

the constant elasticity of variance (CEV) as 

𝑑𝑆(𝑡) = 𝑆(𝑡)[µ𝑑𝑡 + 𝛽𝑆𝛾(𝑡)𝑑𝑍(2)(𝑡)], 𝛾 > 0, 0 ≤ 𝛽 ≤ 1.                    (5) 

where μ denotes the appreciation rate of the risky asset ,𝛽𝑆𝛾(𝑡) its volatility and𝑍(2)(𝑡) another 

standard Brownian motion defined on a complete probability space. 

Let the evolution of the price of the riskless asset be given by the equation 

𝑑𝐵(𝑡) = 𝑘𝐵(𝑡)𝑑𝑡;  𝐵(0) = 1,                                                                (6) 

where 𝑘 is a constant. 

If 𝑊(𝑡)is the total amount of money the insurer and has for investment and he invests 𝜋(𝑡)in 

the riskyasset, then his investments on the riskless asset is[𝑊(𝑡) − 𝜋(𝑡)]. Corresponding to the 

policy 𝜋, the admissible strategy[ 𝑝(𝑡) , 𝜋(𝑡)], the wealth processes of the insurer evolves 

according to the stochastic differential equations (SDE) 

𝑑𝑊𝜋 = 𝜋(𝑡)
𝑑𝑆(𝑡)

𝑆(𝑡)
+ [𝑊(𝑡) − 𝜋(𝑡)]

𝑑𝐵(𝑡)

𝐵(𝑡)
+ 𝑑𝑅(𝑡).                               (7) 

Substituting in (7) the expressions for 
𝑑𝑆(𝑡)

𝑆(𝑡)
,
𝑑B(𝑡)

B(𝑡)
, d𝑅(𝑡), making use of equations (5), (6), and 

equation (7) becomes 

𝑑𝑊𝜋(𝑡) = 𝜋(𝑡)[µ𝑑𝑡 + 𝛽𝑆𝛾(𝑡)𝑑𝑍(2)(𝑡)] + [𝑊(𝑡)– 𝜋(𝑡)]  𝑘𝑑𝑡 + 

(𝜃 − 𝜂𝑝(𝑡))𝑎𝑑𝑡 + 𝑏(1 − 𝑝(𝑡)𝑑𝑍(1)(𝑡).                                                     (8) 

Employing the fact that 



International Journal of Applied Science and Mathematical Theory ISSN 2489-009X Vol. 4 No. 3 2018 

www.iiardpub.org 

  

 

IIARD – International Institute of Academic Research and Development 
 

Page 14 

(𝑑𝑡)2 = (𝑑𝑡)(𝑑𝑍(1)(𝑡) = (𝑑𝑡)(𝑑𝑍(2)(𝑡) = 0,

[𝑑𝑍(1)(𝑡)]
2

= [𝑑𝑍(2)(𝑡)]
2

= 𝑑𝑡,

[𝑑𝑍(1)(𝑡)][𝑑𝑍(2)(𝑡)] = 𝜌𝑑𝑡

},                                        (9) 

the quadratic variation of the wealth process of the insurer is  

(𝑑𝑊𝜋)2(𝑡) = [𝛽2𝜋2(𝑡)𝑠2𝛾)(𝑡) + 𝑏2(1 − 𝑝(𝑡))
2

]𝑑𝑡,                                (10) 

when the shocks do not correlate, and  

(𝑑𝑊𝜋)2(𝑡) =  [𝛽2𝜋2(𝑡)𝑠2𝛾(𝑡) + 2𝛽𝑏(1 − 𝑝(𝑡))𝑠2𝛾(𝑡)𝜋(𝑡)𝜌 + 𝑏2(1 − 𝑝(𝑡))
2

]𝑑𝑡,  (11) 

when the shocks correlate. 

Suppose the insurer has exponential utility preference given as 

𝑈(𝑤) =
−𝑒−𝜙𝑤

𝜙
,   𝜙 > 0,                                               (12) 

then the investors insurer’s problem can then be written as  

𝑉(𝑇, 𝑤) = 𝑀𝑎𝑥𝜋𝐸(𝑡,𝑤)[𝑈(𝑊𝜋)].                                                                (13) 

subject to  

𝑑𝑊𝜋(𝑡) = 𝜋(𝑡) [𝑆(𝑡)[µ𝑑𝑡 + 𝛽𝑆𝛾(𝑡)𝑑𝑍(1)(𝑡)]] + [𝑊(𝑡) − 𝜋(𝑡)]  𝑘𝑑𝑡 + 

                                          (𝜃 − 𝜂𝑝(𝑡))𝑎𝑑𝑡 + 𝑏(1 − 𝑝(𝑡)𝑑𝑍(1)(𝑡). 

 

3. The Optimization Programme 
The insurer’s optimal investment strategy and the proportion reinsured are obtained in this 

section. 

 

3.1 The Case of None Correlation Shocks 

We derive the Hamilton–Jacobi–Bellman (HJB) partial differential equation starting with the 

Bellman equation  

𝑉(𝑤, 𝑇) = 𝑀𝑎𝑥𝜋𝐸[𝑉(𝑤′, 𝑇)].                                                     (14) 

where 𝑤′, denotes the wealth of the insurer at time 𝑇 and equation (14) can be written as: 

𝑀𝑎𝑥𝜋𝐸[𝑉(𝑤, 𝑡 + ∆𝑡, 𝑇)] − 𝑉(𝑤, 𝑡; 𝑇) = 0.                                           (15) 

Dividing both side of the equation by∆𝑡  and taking the limit as ∆𝑡 tends to zero, gives the 

Bellman equation  

𝑀𝑎𝑥𝜋
1

∆𝑡
𝐸(𝑑𝑉) = 0.                       (16) 

Applying the Ito’s lemma which state that  

𝑑𝑉 =
𝜕𝑉

𝜕𝑤
𝑑𝑡 +

𝜕𝑉

𝜕𝑤
𝑑𝑤 +

1

2

𝜕2

𝜕𝑤2 (𝑑𝑤)2,                                                       (17) 

and substituting for 𝑑𝑊𝜋(𝑡)and (𝑑𝑊𝜋)2(𝑡)in (16)using (8) and (10) respectively yields the 

stochastic differential equation (S D E), 

𝑑𝑉 =
𝜕𝑉

𝜕𝑡
𝑑𝑡 +

𝜕𝑉

𝜕𝑤
{𝜋(𝑡) [𝑆(𝑡)[µ𝑑𝑡 + 𝛽𝑆𝛾(𝑡)𝑑𝑍(1)(𝑡)]] + [𝑊(𝑡) − 𝜋(𝑡)]  𝑘𝑑𝑡 + (𝜃 −

𝜂𝑝(𝑡))𝑎𝑑𝑡 + 𝑏(1 − 𝑝(𝑡)} +
𝜕2𝑉

𝜕𝑤2 {[𝛽2𝜋2(𝑡)𝑠2𝛾(𝑡) + 𝑏2(1 − 𝑝(𝑡))
2

]𝑑𝑡},      (18) 

which when substituted in (16)  simplified yields the required Hamilton-Jacobi-Bellman (HJB) 

equation  
𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑤
{𝜋(𝑡)[µ𝑆(𝑡)] + [𝑊(𝑡) − 𝜋(𝑡)]  𝑘 + (𝜃 − 𝜂𝑝(𝑡))𝑎 + 𝑏(1 − 𝑝(𝑡)} +

                                       
𝜕2𝑉

𝜕𝑤2 {[𝛽2𝜋2(𝑡)𝑠2𝛾(𝑡) + 𝑏2(1 − 𝑝(𝑡))
2

]} = 0,     (19)                    

where 

𝐸 (𝑑𝑍(1)(𝑡)) = 𝐸(𝑑𝑍(2)(𝑡) = 0 .                                                         (20) 

Rewriting (20) in a different, we have 
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                       𝑉𝑡 + {(𝜇𝑆 − 𝐾)𝜋 + 𝑘𝑊 + (𝜃 − 𝜂𝑝(𝑡))𝑎 + 𝑏(1 − 𝑝(𝑡))}𝑉𝑤 +

                       {𝛽2𝜋2(𝑡)𝑠2𝛾(𝑡) + 𝑏2(1 − 𝑝(𝑡))
2

} 𝑉𝑤𝑤 = 0.                        (21)   

 

The homogeneity of the objective function, the restriction and the terminal condition, lead to 

the conjecture that the value function V must be linear to 
−𝑒−𝜙𝑤

𝜙
. Therefore, let 

𝑉(𝑤, 𝑡, 𝑇) = 𝑔(𝑡, 𝑇) (
−𝑒−𝜙𝑤

𝜙
),                                                                     (22) 

such a function such that at the terminal date 𝑇, 
𝑔(𝑇, 𝑇) = 1                                                                                    (23) 

Then we obtain from (22) 

𝑉𝑡 =
−𝑒−𝜙𝑤

𝜙
𝑔′ ;  𝑉𝑤 = 𝑒−𝜙w𝑔; 𝑉𝑤𝑤 = −𝜙𝑒−𝜙w𝑔.                                     (24) 

Using (24) in (19) and simplifying yields the new HJB equation  
−1

𝜙
𝑔′ + {{(𝜇𝑆 − 𝑘)𝜋 + 𝑘𝑊 + (𝜃 − 𝜂𝑝(𝑡))𝑎 + 𝑏(1 − 𝑝(𝑡))} −

𝜙

2
{𝛽2𝜋2(𝑡)𝑠2𝛾(𝑡) + 𝑏2(1 −

𝑝(𝑡))
2

}} 𝑔 = 0.                                                                          (25) 

To obtain the optimal value 𝜋∗(𝑡)  of 𝜋(𝑡) we differentiate (25) with respect to 𝜋(𝑡)to obtain 

(𝜇𝑆(𝑡) − 𝑘) −
𝜙

2
[2𝜋(𝑡)𝛽2𝑠2𝛾(𝑡)] = 0,                                                        (26) 

which simplifies to 

(𝜇𝑆(𝑡) − 𝑘) − ∅𝛽2𝑠2𝛾(𝑡)𝜋(𝑡) = 0,                                                              (27) 

and we obtain the optimal strategy as 

𝜋∗(𝑡) =
(𝜇𝑆(𝑡)−𝑘)

∅𝛽2𝑠2𝛾(𝑡)
.                                                                 (28) 

This is the insurer’s optimal investment in the risky asset (stock) which, clearly is horizon 

dependent. 

Also differentiating equation (25) with respect to 𝑝(𝑡), we obtain 

−𝑎𝜂 − 𝑏 −
∅

2
𝑏2(2(1 − 𝑝(𝑡)) × −1 ) = 0,                                                    (29) 

that simplifies to 

−𝑎𝜂 − 𝑏 + 𝜙𝑏2 − 𝜙𝑏2𝑝(𝑡) = 0.                                                                   (30) 

From (30), we obtain the optimal reinsured proportion as  

𝑝∗(𝑡) = 1 − (
𝑎ŋ+𝑏

𝜙𝑏2
).                                                                                                                                    (31) 

It is also dependent on time. 

 

3.2 The Case of Correlated Shocks 

In the case where the shocks correlate, equation (19) modifies to 

𝑑𝑉 =
𝜕𝑉

𝜕𝑡
𝑑𝑡 +

𝜕𝑉

𝜕𝑤
{𝜋(𝑡) [𝑆(𝑡)[µ𝑑𝑡 + 𝛽𝑆𝛾(𝑡)𝑑𝑍(1)(𝑡)]] + [𝑊(𝑡)– 𝜋(𝑡)]  𝑘𝑑𝑡 + (𝜃 −

𝜂𝑝(𝑡))𝑎𝑑𝑡 +         𝑏(1 − 𝑝(𝑡)} +
𝜕2𝑉

𝜕𝑤2
{ [𝛽2𝜋2(𝑡)𝑠2𝛾(𝑡) + 2𝛽𝑏(1 − 𝑝(𝑡))𝑠2𝛾(𝑡)𝜋(𝑡)𝜌 +

𝑏2(1 − 𝑝(𝑡))
2

]𝑑𝑡}.                                                                                           (32) 

Substituting (32) in (16) and simplifying, we get the modified Hamilton-Jacobi-Bellman (HJB) 

equation 

𝑉𝑡 + {(𝜇𝑆 − 𝐾)𝜋 + 𝑘𝑊 + (𝜃 − 𝜂𝑝(𝑡))𝑎 + 𝑏(1 − 𝑝(𝑡))}𝑉𝑤 + {𝛽2𝜋2(𝑡)𝑠2𝛾(𝑡) + 2𝛽𝑏(1 −

𝑝(𝑡))𝑠2𝛾(𝑡)𝜋(𝑡)𝜌 +  𝑏2(1 − 𝑝(𝑡))
2

]} 𝑉𝑤𝑤 = 0.                              (33) 

Using (24) in (33) and simplifying yields the new HJB equation  
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−1

𝜙
𝑔′ + {{(𝜇𝑆 − 𝑘)𝜋 + 𝑘𝑊 + (𝜃 − 𝜂𝑝(𝑡))𝑎 + 𝑏(1 − 𝑝(𝑡))} −

𝜙

2
[𝛽2𝜋2(𝑡)𝑠2𝛾(𝑡) + 2𝛽𝑏(1 −

𝑝(𝑡))𝑠2𝛾(𝑡)𝜋(𝑡)𝜌 + 𝑏2(1 − 𝑝(𝑡))
2

]} 𝑔 = 0.                            (34) 

Again, to obtain the optimal value 𝜋∗(𝑡)  of  𝜋(𝑡) we differentiate (34) with respect to  𝜋(𝑡) to 

obtain 

(𝜇𝑆(𝑡) − 𝑘) − ∅[𝜋(𝑡)𝛽2𝑠2(𝛾+1)(𝑡)] − ∅𝑏𝛽𝜌(1 − 𝑝(𝑡))𝑠2(𝛾+1)(𝑡) = 0,        (35) 

From which we obtain the optimal investment strategy of the insurer to be  

𝜋∗(𝑡) =
(𝜇𝑆(𝑡)−𝑘)

∅𝛽2𝑠2𝛾(𝑡)
+

𝑏𝜌(𝑝(𝑡)−1)

𝛽
.                                                                           (36) 

Clearly, the insurer’s optimal investment strategy when the shocks do not correlate can be 

recover for (36) if  𝜌 equals zero, which is the implication of none correlation. 

This insurer’s optimal investment strategy in the risky asset (stock) is horizon dependent. 

Also differentiating equation (35) with respect to 𝑝(𝑡), we obtain 

−𝑎𝜂 − 𝑏 + ∅𝑏2(1 − 𝑝(𝑡))) + 𝜌∅𝑏 𝛽𝑠2𝛾(𝑡) = 0.                                             (37) 

From (37), we obtain the insurer’s optimal reinsured proportion as  

𝑝∗(𝑡) = 1 − (
𝑎ŋ+𝑏

𝜙𝑏2 ) +
𝜌 𝛽𝑠2𝛾(𝑡)

𝑏
.                                                                         (38) 

It is also dependent on time. 

As in the case of the insurer’s optimal investment strategy in the risky asset when the shocks 

do not correlate, which we recovered for (36) if  𝜌 equals zero, the insurer’s optimal reinsured 

proportion when the shocks do not correlate can be recovered for (38) under the same condition 

of 𝜌 equals zero. 

 

3.3. The Effect of Correlation of the Shocks. 

In this segment we express the effect of correlation of the shocks thus 

 

3.3.1. The case of the investment strategies in the risky asset 

We compare (28), when the shocks do not correlate, 

𝜋𝑛𝑐
∗(𝑡) =

(𝜇𝑆(𝑡)−𝑘)

∅𝛽2𝑠2𝛾(𝑡)
   

and (36)  when the shocks do not correlate, 

𝜋𝑐
∗(𝑡) =

(𝜇𝑆(𝑡)−𝑘)

∅𝛽2𝑠2𝛾(𝑡)
+

𝑏𝜌(𝑝(𝑡)−1)

𝛽
.   

It can be observed that 

𝜋𝑐
∗(𝑡) = 𝜋𝑛𝑐

∗(𝑡) +
𝑏𝜌(𝑝(𝑡)−1)

𝛽
.                                                                        (39)   

The investment strategies differ by the fraction, 
𝑏𝜌(𝑝(𝑡)−1)

𝛽
. 

If 𝜌 is negative, that is 

𝜌 = −𝜗,                                                                                                            (40) 

we have 

𝜋𝑐
∗(𝑡) = 𝜋𝑛𝑐

∗(𝑡) +
𝜗𝑏(1−𝑝(𝑡))

𝛽
.                                                                         (41)    

Equation (41) implies the reverse of what is obtained in (40).       

Also, if 

𝜌 = 1,                                                                                                                (42) 

we have  

𝜋𝑐
∗(𝑡) = 𝜋𝑛𝑐

∗(𝑡) −
𝑏(1−𝑝(𝑡))

𝛽
,                                                                            (43) 

and when 

𝜌 = −1                                                                                                              (44) 
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we get 

𝜋𝑐
∗(𝑡) = 𝜋𝑛𝑐

∗(𝑡) +
𝑏(1−𝑝(𝑡))

𝛽
.                                                                             (45) 

 

3.3.2. The case of the reinsured proportion   
We also compare the optimal reinsured proportion as in (31), when the shocks do not correlate, 

𝑝𝑛𝑐
∗(𝑡) = 1 − (

𝑎ŋ+𝑏

𝜙𝑏2 ).  

and (38) when the shocks do correlate,                                                           

𝑝𝑐
∗(𝑡) = 1 − (

𝑎ŋ+𝑏

𝜙𝑏2 ) +
𝜌 𝛽𝑆2(𝛾+1)(𝑡)

𝑏
.  

It can be observed that 

𝑝𝑐
∗(𝑡) = 𝑝𝑛𝑐

∗(𝑡) +
𝜌 𝛽𝑠2𝛾(𝑡)

𝑏
.                                                                             (46) 

The optimal reinsured proportion differ by the fraction, 
𝜌 𝛽𝑠2𝛾(𝑡)

𝑏
.  

Applying (40) in (46), gives 

𝑝𝑐
∗(𝑡) = 𝑝𝑛𝑐

∗(𝑡) −
𝜗 𝛽𝑠2𝛾(𝑡)

𝑏
,                                                                                                                     (47) 

a reversal of  (46). 

Further, the application of (42) in (46) yields 

𝑝𝑐
∗(𝑡) = 𝑝𝑛𝑐

∗(𝑡) +
 𝛽𝑠2𝛾(𝑡)

𝑏
 ,                                                                                                                       (48)  

and using  (44) in (46) gives 

𝑝𝑐
∗(𝑡) = 𝑝𝑛𝑐

∗(𝑡) −
 𝛽𝑠2𝛾(𝑡)

𝑏
 ,                                                                                                                        (49) 

which means that the reinsured proportion, when the shocks do not correlate is 
 𝛽𝑠2𝛾(𝑡)

𝑏
greater 

than the insurer’s reinsured proportion, when the shocks correlate. 

 

3.4   Findings 

1. The case of investment strategies: we found the investment strategies differ by the fraction, 
𝑏𝜌(𝑝(𝑡)−1)

𝛽
. 

2. The case of the reinsured proportion: it found that the optimal reinsured proportion differ by 

the fraction, 
𝜌 𝛽𝑠2𝛾(𝑡)

𝑏
.  

 

4. Conclusion 

This work considered the impact of correlation of Brownian motions (shocks) on the optimal 

investment strategy and the reinsured proportion of the wealth an insurer had available for 

investment. It assumed that the insurer had the liberty to take proportional reinsurance and 

traded two assets in the market. 

Ito’s lemma was used to obtain the H-J-B equation from which optimal investment strategy 

and reinsured proportion were calculated. The optimal strategy was found to be a function of 

the price of the risky asset, and the square of the volatility of the risky asset when the Brownian 

motion did not correlate. When the Brownian motions were correlated, the optimal strategy 

was found to be a function of the price of the risky asset the square of the volatility of the risky 

asset and the reinsured proportion. 

In the case of the reinsured proportion, when the shocks did not correlation, it was not horizon 

dependent. However when the shocks were correlated, it was found to be a function of the price 

and the volatility of the risky asset. 

These impacts of the correlation of the Brownian motions should be considered when the 

insurer makes investment decisions. 
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